The Relationship between the Conformation of Epimeric 6-Substituted 4-ene-3-Ketosteroids and their Ultraviolet and Infrared Absorption Spectra

By Ken-ichi Morita

(Received January 25, 1958)

In the previous paper¹⁾ an empirical rule has been presented for the absorption spectra of C_6 -substituted 4-ene-3-ketosteroids. Namely, 6β -isomers have lower K-band intensities in the ultraviolet absorption spectra than the corresponding 6α -isomers. The effect was ascribed to the greater steric hindrance involved in 6β -isomers in which 6β -substituents have $1:3-X:C_{10}$ Me and $1:3-X:C_8$ H interactions²⁾.

Both α and β substituents in the system cause only the small wavelength displacements $(\pm \Delta \lambda \simeq 5 \text{ m}\mu)$ accompanied by decreases in ε . Hence, the type of spectral effects arising from the steric hindrance in the system may be associated with transitions between non-planar ground states and planar or near-planar excited states³⁾. Thus the angles θ between the C₃ carbonyl groups and 4,5-unsaturated linkages in the ground state may be calculated from an equation $\cos^2\theta = \varepsilon/\varepsilon_0$, presented by Braude and Sondheimer³⁾, where ε_0 is the value for the unhindered compound in which $\theta=0$, if it is assumed that the 4-ene-3-keto system of 4-cholesten-3-one has uniplanar conformation. The values of θ derived in this way are given in Table I.

TABLE I
ULTRAVIOLET SPECTRA OF EPIMERIC
6-SUBSTITUTED 4-CHOLESTEN-3-ONE⁴>

Compound	$\lambda_{\max}^{\mathrm{alc}}$ $(\mathrm{m}\mu)$	ε	$\varepsilon/\varepsilon_0$	θ °
4-cholesten-3-one	241	18,0005)	1.	0
6α-hydroxy-	240	17,080	0.95	13
6β -hydroxy-	237	14,500	0.80	27
-6α-acetoxy-	238	15,800	0.88	20
6β-acetoxy-	237	13,200	0.73	31
6α -chloro-	239	17,500	0.97	10
6β -chloro-	241	15,100	0.84	23
6α-bromo-	238	15,800	0.88	20
6β -bromo-	246	13,500	0.75	30
6α -methyl-	241	16,650	0.92	16
6β -methyl-	241	15,100	0.84	23

¹⁾ K. Morita, J. Chem. Soc. Japan, Pure Chem. Sec. (Nippon Kagaku Zassi), 78, 1581 (1957).

The greater values in the interplanar angles for the 6β -substituted 4-ene-3-ketosteroids, deduced from the difference in ultraviolet absorption, may be reflected in the infrared spectra. Unfortunately, only a limited number of the infrared spectra of these compounds have been reported^{6,7,8)}. In the infrared spectra of epimeric 6acetoxy-4-cholesten-3-one6) the location of the carbonyl band for 6β -isomer approaches that of saturated ketone more than that for 6α -isomer. A rough linear relationship⁹⁾ appears to exist between the interplanar angle θ deduced from difference in ultraviolet and $\Delta \nu / \Delta \nu_0$ where $\Delta \nu$ refers to the shift with respect to an unconjugated ketone (taken as 1713 cm.-1) and $\Delta \nu_0$ refers to the shift in the 4-cholesten-3-one (Table II).

Table II INFRARED SPECTRA OF EPIMERIC 6-ACETOXY-4-CHOLESTEN-3-ONE IN CAREON DISULFIDE Compound $\nu_{\rm C=O}({\rm cm.}^{-1})~\Delta\nu/\Delta\nu_0~\nu_{\rm C=C}({\rm cm.}^{-1})$

	C=0/01111	,,,	C=C
4-cholesten-3-on	e 1684	1.	1626
6α-acetoxy-	1692	0.72	1631
6β-acetoxy-	1698	0.52	

Sugiyama Chemical Research Institute Mure, Mitaka, Tokyo

D. H. R. Barton, J. Chem. Soc., 1953, 1027; D. H.
 R. Barton and R. C. Cookson, Quart. Rev., 10, 44 (1956).
 E. A. Braude and F. Sondheimer, J. Chem. Soc., 1955, 3754.

⁴⁾ See Table I of ref. 1 and literatures cited there.

L. Dorfman, Chem. Rev., 53, 47 (1953). cf. D. H.
 R. Barton and E. R. H. Jones, J. Chem. Soc., 1943, 602.

L. F. Fieser, J. Am. Chem. Soc., 75, 4377 (1953).
 K. Dobriner, E. R. Katzenellenbogen and R. N. Jones, "Infrared Absorption Spectra of Steroids", Chart 203, (1953).

⁸⁾ R. N. Jones and F. Herling, J. Org. Chem., 19, 1252 (1954).

⁹⁾ E. A. Braude and C. J. Timmons, J. Chem. Soc., 1955, 3766.